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Introduction

Lipids, proteins, and nucleic acids are the fundamental build-
ing blocks of all cells and have a variety of functions in different 
processes [1]. As the principal component of biological mem-
branes, lipids play a key role in membrane consistency, energy 
storage and metabolism, and act as signaling molecules for 
many cellular activities [2-5]. Given their biological importance, 
the regulation of lipid metabolism is essential for maintaining 
cellular homeostasis. Abnormal regulation of lipid metabolism 
can lead to lipid metabolic disorders, resulting in obesity, Non-
Alcoholic Fatty Liver Disease (NAFLD), and other metabolic dis-
eases [6,7]. Therefore, studying the lipid metabolism regulation 
is of great significance.

The gastrointestinal tract plays a central role in food diges-
tion and nutrient absorption, providing materials (such as lipids, 
glucose and proteins) and energy to the human body [8,9]. It 
also has a multitude of endocrine cells, being the largest endo-
crine organ [10]. Enteroendocrine cells, which include X/A-like 
cells, L cells, G cells, K cells, I cells, enterochromaffin cells, and 
D cells are scattered throughout the gastrointestinal mucosa in 
the crypts and villi [11]. They can sense luminal content, pro-
duce and secrete various hormones and neuropeptides that 

act on different targeting cells, thus playing important roles in 
modulating multiple physiological and homeostatic functions, 
including energy metabolism [12,13]. Gastrointestinal hor-
mones can also activate neural circuits that regulate peripheral 
tissues, for instance the liver, pancreatic islets, adipose tissue, 
and skeletal muscle, coordinating overall energy absorption, 
storage, and utilization [14,15]. It is undoubtable enteroendo-
crine cells play important roles in lipid metabolism regulation, 
directly or indirectly.

The X/A-like cell is a unique enteroendocrine cell population 
located in the oxyntic mucosa of stomach, representing 20-30% 
of the total endocrine cell population [16]. At first, its function 
was unknown. However, over the past years, with the discovery 
of hormones produced by the X/A-like cell, particularly ghrelin 
and nesfatin-1, this cell has attracted much attention [17,18]. 
Studies have confirmed that the X/A-like cell and its products 
participate in regulating energy metabolism, specifically the glu-
cose and lipid metabolism regulation [19]. Functions of the X/A-
like cell in the lipid metabolism regulation will be discussed in 
this review, with an emphasis on the effects of ghrelin, desacyl-
ghrelin, obestatin, and nesfatin-1 produced by the X/A-like cell.
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The X/A-like cell is a unique cell population

In the stomach, the X/A-like cell has been identified as a fifth 
distinct endocrine cell type following the discovery of G cells 
producing gastrin, D cells releasing somatostatin, enterochro-
maffin-like cells secreting histamine, and enterochromaffin cells 
containing serotonin [20]. When this unique cell population was 
first discovered, it was called X cell because its function was un-
known [16]. In rats, it was also named A-like cells because the 
morphology of this cell has been described as similar to pancre-
atic A cells [21]. Therefore, in rodents, this endocrine cell type 
was termed X/A-like cell [22,23]. In humans, it was named P/D1 
cell, characterized by secretory granules, which were compact 
and round in the electron microscope, distinguishing it from 
other endocrine cells [24].

The X/A-like cell is the second most plentiful endocrine cell 
population in the stomach, primarily located in the oxyntic mu-
cosa [25]. Besides the mucosal layer of the stomach, the X/A-
like cell also exists in the intestinal mucosa [26,27]. Most X/A-
like cells are present in gastric body, followed by the duodenum, 
while only a few can be observed in the colon, ileum and cecum 
[28].

According to their morphology, there are two types of X/A-
like cells: Opened type and closed type. Opened-type cells are 
triangular or elongated with contact to the lumen, while closed-
type cells have small and round shapes without any connection 
to the lumen [29]. These distinct relationships with the lumen 
suggest that the regulatory mechanisms of opened-type and 
closed-type X/A-like cells may differ. The former, with direct 
connection to luminal contents, are likely modulated by luminal 
signals, for example pH and nutrients [22,26,30]. On the other 
hand, closed-type cells, situated in the base of the mucosal lay-
er without any connection to luminal contents, may be regulat-
ed by mechanical stimulation, hormones, or neuronal signals. 
The distribution of them also differs, with opened-type X/A-like 
cells mainly found in the intestine, and their numbers gradu-
ally increasing from the duodenum to the colon. In contrast, the 
majority of closed-type X/A-like cells are found in the stomach, 
where only a few opened-type cells are observed [29,31,32]. 
These differences in distribution suggest that X/A-like cells may 
have various functions in different parts of the gastrointestinal 
tract.

For a long time, functions of the X/A-like cell remained un-
known until the discovery of ghrelin in 1999, which was found 
to be produced and secreted by the X/A-like cell and the only 
hormone known to increase appetite peripherally [17,33]. This 
discovery brought significant attention to products and func-
tions of X/A-like cells. Over the years, other products derived 
from the X/A-like cell, such as desacyl-ghrelin, obestatin, nesfa-
tin-1, have also been identified.

Peptides derived from X/A-like cells regulate lipid metabo-
lism in distinct ways

GHRL is the encoding gene for ghrelin, desacyl-ghrelin and 
obestatin, which encodes a 117 amino-acid peptide, prepro-
ghrelin [34]. Prepro-ghrelin is then cleavaged to mature ghrelin 
and obestatin [35-37]. Catalyzed by the Ghrelin O-Acyltransfer-
ase (GOAT), ghrelin is activated by a unique post-transcriptional 
modification, which the third amino acid serine is octanoylat-
ed [38]. Nesfatin-1, a hormone cleavaged from the precursor 
Nucleobindin 2 (NUCB2), is encoded by NUCB2 gene [18]. The 
discovery of these products has led to the identification of the 

X/A-like cell’s functions in energy metabolism regulation. For 
instance, active (acyl-) ghrelin has been demonstrated to en-
hance growth hormone secretion, stimulate food intake, and 
promote adiposity, while desacyl-ghrelin, the inactive form of 
ghrelin, has been suggested to have opposite effects. On the 
other hand, obestatin, has been found to inhibit food intake, 
delay gastric emptying, leading to reduced body weight and fat 
mass. Nesfatin-1, has been observed to inhibit food intake, re-
duce body weight, improve glucose homeostasis.

In addition to their effects on energy metabolism, X/A-like 
cell products have been implicated in lipid metabolism regula-
tion. Ghrelin as well as desacyl-ghrelin has been observed to 
stimulate lipogenesis, inhibit lipolysis, leading to increased fat 
storage. Conversely, obestatin has been suggested to increase 
lipolysis and promote lipid oxidation, leading to decreased fat 
storage and improved lipid metabolism. Nesfatin-1 has also 
been shown to improve lipid metabolism by reducing triglyc-
eride levels and increasing fatty acid oxidation. Overall, the 
X/A-like cell and its products have emerged as key regulators of 
energy and lipid metabolism, with potential implications for the 
treatment of obesity and other metabolic diseases.

Ghrelin stimulates lipid accumulation in liver and adipose 
tissue by promoting lipogenesis and inhibiting lipolysis

Although acyl-ghrelin only accounts for 10-20% of the to-
tal circulating ghrelin, only acyl-ghrelin can bind to its recep-
tor, Growth Hormone Secretagogue Receptor 1a (GHS-R1a) 
[39]. The wide distribution of ghrelin and GHS-R1a in various 
tissues indicates multiple physiological functions of ghrelin [40-
44]. Its classic function is to increase growth hormone secre-
tion synergistically with growth hormone-releasing hormone 
through a hypothalamus-pituitary mechanism [17,45]. Ghrelin 
also increases appetite through GHS-R1a via both the central 
mechanism and vagal signaling, and it is the only hormone pro-
duced peripherally that stimulates food intake [33,46-51]. As 
a hormone produced by the gastrointestinal tract, ghrelin ac-
celerates gastric emptying and decreases small intestine transit 
time, as well as triggers the migrating motor complex in fasting 
conditions [52-55]. Ghrelin exerts favorable functions in sleep, 
memory, and may exert anxiolytic and anti-depressant effects 
in humans and animals, although this remains controversial 
[56-58]. It exerts protective effects on cardiovascular function, 
dilates vessels, increases myocardial contractility, and protects 
cardiomyocytes and endothelial cells via both peripheral and 
central mechanisms [59-62]. Ghrelin also promotes lympho-
cyte development, exerts immune-regulatory function, inhibits 
pro-inflammatory factors and chemokines, and suppresses the 
immune response, thus exerting anti-inflammatory function 
[63,64]. Furthermore, ghrelin regulates the glucose metabo-
lism. In pancreatic islets, ghrelin inhibits insulin secretion by di-
rectly acting on b-cells and indirectly via somatostatin [65,66]. 
It also stimulates the secretion of glucagon by directly acting on 
a-cells to regulate glucose metabolism [67]. In addition, ghrelin 
impairs insulin sensitivity in insulin-targeted tissues, for exam-
ple the skeletal muscle, adipose tissue and liver [68-70].

Of note, ghrelin participates global lipid metabolism. Exog-
enous ghrelin, both centrally and peripherally, increases lipid 
content in circulation. For example, intracerebroventricular 
injections of ghrelin in rats for five days significantly increased 
circulating lipid contents, such as free fatty acid, cholesterol, 
and triglyceride [71]. In anorexia nervosa patients, intravenous 
infusion of ghrelin twice a day for fourteen days significantly 
increased the plasma triglyceride levels [72].
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Liver

Ghrelin has been reported to act on hepatic lipid metabo-
lism. Intracerebroventricular injections of ghrelin in fish in-
creased lipogenesis and decreased the oxidation of fatty acid 
in the liver [73]. In line with this finding, central ghrelin admin-
istration in rats promoted hepatic de novo lipogenesis and in-
hibited lipid mobilization, as evidenced by increased expression 
of lipogenesis-related genes and reduced Carnitine Palmitoyl-
transferase 1 (CPT1) expression, a key enzyme for the oxidation 
of fatty acid [74]. However, mechanisms of central ghrelin in 
hepatic lipogenesis and lipid mobilization were different, since 
the former was in a GH-independent manner, while the latter 
was in a GH-dependent manner. Ghrelin also acts peripher-
ally to regulate hepatic lipid metabolism. Subcutaneous injec-
tion of ghrelin for four days significantly increased the level of 
hepatic triglyceride, and induced expressions of genes related 
to hepatic lipogenesis, for example Fatty Acid Synthase (FAS), 
Acetyl-Coa Carboxylase (ACC), while reduced CPT expression, 
and decreased phosphorylated AMP-Activated Protein Kinase 
(AMPK) [75]. Chronic Intravenous infusion of acyl-ghrelin in-
duced hepatic steatosis in rats, evidenced by increased lipid 
droplet number and triglyceride content, which was mediated 
by a GHS-R1a-dependent mechanism [76]. Subcutaneous infu-
sion of exogenous ghrelin for 14 days in mice increased lipid de-
position in the liver by promoting lipid synthesis, evidenced by 
increased expression of genes promoting lipogenesis, including 
Peroxisome Proliferator-Activated Receptors g (PPARg) and Ste-
rol Regulatory Element Binding Protein 1 (SREBP1) [77]. These 
effects were also confirmed in primary hepatocytes isolated 
from mice. Furthermore, ghrelin receptor antagonist or ghrelin 
receptor gene knockout significantly inhibited hepatic lipogen-
esis and alleviated obesity-associated hepatic steatosis in mice. 
In vitro experiment indicates ghrelin regulates lipid metabolism 
in the liver via directly activating GHS-R1a. In terms of the un-
derlying mechanism, this study uncovered the mammalian Tar-
get Of Rapamycin (mTOR)-PPARg signaling mediated ghrelin’s 
effects on hepatic lipid metabolism, since both mTOR inhibitor 
and PPARg antagonism or PPARg gene knockout significantly 
attenuated the ghrelin’s stimulatory effect on hepatic lipogen-
esis. Moreover, knockout of mTOR specifically in X/A-like cells 
elevated circulating ghrelin level, increased hepatic lipogenesis, 
while activation of mTOR pathway specifically in X/A-like cells 
reduced the expression of ghrelin, improved hepatic steatosis 
in obese mice, which was partly reversed by exogenous ghre-
lin administration [78]. These evidence support the notion that 
ghrelin regulates lipid metabolism in the liver through promot-
ing lipogenesis while inhibiting the oxidation of fatty acid. In 
contrast, there are a few reports suggest that ghrelin attenu-
ates hepatic lipid accumulation. For instance, intracerebroven-
tricular infusion of ghrelin by mini-pumps for seven days in mice 
was reported to increase the breakdown of triglyceride in liver, 
resulting in reduced hepatic triglyceride content [79]. Ghrelin 
administrated subcutaneously twice weekly for two weeks re-
duced the triglyceride content in mice, accompanied with au-
tophagy induction, and in vitro ghrelin treatment decreased the 
triglyceride content in LO2 cells stimulated by free fatty acids 
[80].

White adipose tissue

Ghrelin has also been found to increases lipid accumulation 
in adipose tissue. Studies have shown that chronic central ghre-
lin infusion promotes the expression of enzymes related to fat 
storage, including Stearoyl-Coa Desaturase-1 (SCD-1), while de-

creases the expression of CPT1a in white adipocytes, leading 
to lipid accumulation and increased adipose tissue weight [81]. 
These effects occurred independently of ghrelin-induced hyper-
phagia [82]. Ghrelin administration through daily intraperitone-
al injection or mini-pumps for seven to fourteen days in rodents 
has been shown to significantly increase fat mass and adipose 
tissue weight, along with enlarged adipocytes and elevated tri-
glyceride content in white adipose tissues, which was caused by 
reducing fat utilization [83,84]. Consistent with this notion, an-
other study has been shown that chronic intravenous infusion 
of acyl-ghrelin increased white adipose tissue mass in rats re-
sulted from reduced lipid export and increased lipogenesis with 
no change in food intake, since ghrelin decreased serum free 
fatty acid level, as well as ATP-Binding Cassette Transporter G1 
(ABCG1) expression, but elevated SREBP1c expression in white 
adipose tissues [76]. Furthermore, transcriptional blockade of 
GHS-R1a abolished these alterations, suggesting that these ef-
fects of ghrelin were in a GHS-R1a-dependent manner. GHS-R 
ablation reduces lipid uptake and lipogenesis in white adipose 
tissues, and protects mice from diet-induced obesity [85,86]. 
There are also other studies indicating that ghrelin promotes 
adipogenesis and inhibits lipolysis in adipocytes independent of 
GHS-R1a [87,88]. The stimulatory effect of ghrelin on lipid accu-
mulation in adipocytes has also been confirmed in vitro. Ghre-
lin treatment significantly elevated expressions of lipogenesis-
related genes, such as PPARg, SREBP1, ACC, FAS, and proteins 
related to fat storage, such as Lipoprotein Lipase (LPL), perilipin 
in human omental adipocytes [89]. Ghrelin was shown to sup-
press lipolysis in rat adipocytes [88]. In fish, ghrelin was also 
reported to stimulate synthesis of triglycerides, but increase li-
polysis in isolated adipocytes [90].

Brown adipose tissue

Ghrelin is also involved in regulating thermogenic function of 
brown adipose tissue. Chronic central ghrelin infusion has been 
shown to decrease the expression of mitochondrial Uncoupling 
Proteins (UCP) 1 and 3, which are related to thermogenesis, and 
this may be mediated by the sympathetic nervous system [81]. 
Similarly, chronic repeated ghrelin treatment for seven days in 
mice decreased UCP1 mRNA expression in brown adipose tis-
sue [83]. In cultured brown adipocytes, ghrelin treatment inhib-
ited the expression of adipogenic and thermogenic genes, but 
the antagonist for GHS-R eliminated the effect of ghrelin [85]. 
Furthermore, both the antagonist for GHS-R in vitro and GHS-R 
ablation in vivo increased UCP1 expression in brown adipose 
[85,91], suggesting that the effect of ghrelin in brown adipose 
tissue is GHS-R dependent.

The effect of ghrelin on lipid accumulation of liver and adi-
pose tissue, and its role in the thermogenic function of brown 
fat suggest that ghrelin may serve as a potential target to com-
bat obesity, NAFLD and other lipid disorders.

Desacyl-ghrelin either inhibits or promotes lipid accumula-
tion depending on the specific tissues or cells

Desacyl-ghrelin is the nonacylated form of ghrelin, accounting 
for the most abundant form of ghrelin in the circulation [92,93]. 
Although previously thought to be inactive, recent studies have 
shown that desacyl-ghrelin has functions that mostly opposed 
to acyl-ghrelin [94-98]. Desacyl-ghrelin is found to reduce appe-
tite, decrease food intake, and delay gastric emptying through a 
central mechanism independent of the vagal afferent pathway 
[94,99-101]. In the cardiovascular system, desacyl-ghrelin inhib-
its cell death of cardiomyocytes and endothelial cells [102,103], 
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and decreases anxiety-like behavior [104,105]. With regard to 
the glucose metabolism, desacyl-ghrelin enhances insulin se-
cretion by increasing the number and inhibiting the apoptosis 
of b-cells [106]. Furthermore, it acts on the adipose tissue, skel-
etal muscle and liver to improve the insulin sensitivity and glu-
cose tolerance [107-110].

In terms of the lipid metabolism, the lipid content in the 
blood, which is elevated by ghrelin, has been reported to be 
decreased by desacyl-ghrelin. Administration of desacyl-ghrelin 
in humans decreased free fatty acids levels in the circulation 
[111,112] In addition, desacyl-ghrelin overexpression was ob-
served to decrease plasma free fatty acid levels in mice [113].

Liver/muscle

There is limited research about the function of desacyl-ghre-
lin in hepatic lipid metabolism. However, a study using microar-
rays to investigate the rapid effects of desacyl-ghrelin on meta-
bolic profile in GHS-R ablated mice found that desacyl-ghrelin 
acutely regulated hepatic genes related to lipid metabolism in a 
GHS-R-independent manner [108]. Acute desacyl-ghrelin treat-
ment upregulated adipogenic pathway gene sets, including 
PPARg, which was confirmed by quantitative PCR. Consistent 
with this finding in vivo, desacyl-ghrelin treatment significant-
ly increased triglyceride content in primary hepatocytes from 
rats, as well as the expression of lipogenesis-related genes, for 
example Diacylglycerol Acyltransferase (DGAT1) [114]. Desacyl-
ghrelin also elevated phosphorylation rates of AMPK and ACC, 
indicating that it stimulated AMPK-activated mitochondrial fat-
ty acid b-oxidation. In addition, studies reported that desacyl-
ghrelin increased the lipid content as well as ACC expression in 
mouse myoblast C2C12 cells, while reducing the expression of 
UCP2 and UCP3 [115]. Desacyl-ghrelin was observed to stimu-
late fatty acid oxidation, accompanied by an increase in ACC 
phosphorylation, and blunt epinephrine-stimulated lipolysis in 
isolated muscle from rats [116,117].

Adipose tissue

Studies have shown that in vivo, desacyl-ghrelin inhibits 
lipid accumulation in adipose tissues. In fact, overexpressing of 
desacyl-ghrelin in mice decreased fat pad mass weight [100], 
and in adipose tissues, it decreased epididymal and perirenal 
fat masses, thus resisting to high-fat diet-induced obesity [107]. 
However, studies have found desacyl-ghrelin promotes lipogen-
esis in adipocytes in vitro. Desacyl-ghrelin markedly elevated 
the expression of genes promoting lipogenesis, for instance 
PPARg, SREBP1, FAS. ACC, leading to increased lipid contents in 
omental adipocytes [89,118]. Additionally, desacyl-ghrelin has 
inhibitory effects on lipolysis, as evidenced by studies in vivo 
and vitro. An overnight intravenous infusion of desacyl-ghrelin 
was shown to inhibit lipolysis in healthy humans [112], while 
in rats, it blunted b3-adrenergic receptor-induced lipolysis in 
mature subcutaneous and visceral adipose tissue depots, which 
was mediated by reducing activation of hormone-sensitive li-
pase (HSL), a key lipid hydrolase [119]. Desacyl-ghrelin also 
inhibited lipolysis in rat and 3T3-L1 adipocytes in both a GHS-
R1a dependent and independent manner [88,120,121]. Fur-
thermore, with regard to brown adipose tissue, desacyl-ghrelin 
and its analog stimulated expression of mitochondrial function 
markers and enhanced thermogenesis [122].

In conclusion, desacyl-ghrelin not only antagonizes ghrelin 
in the regulation of lipid metabolism, but also exerts actions 
similar to ghrelin in some aspect, such as promoting lipid ac-

cumulation in liver. The discrepant effects on lipid metabolism 
in different tissues/cells may due to the distinct receptor dis-
tribution or downstream intracellular pathways. However, the 
study of desacyl-ghrelin has entered a stagnant period due to 
the lack of identification of its receptor. Identification of desac-
yl-ghrelin receptors in the future will largely increase our knowl-
edge about its function and mechanism. Moreover, the clinical 
importance of desacyl-ghrelin is increased by evidence linking 
elevated acyl-ghrelin/desacyl-ghrelin ratios to obesity and dia-
betes [110,123,124].

Obestatin has complex effects on lipid metabolism

Obestatin, a 23 amino-acid peptide, was named after the 
Latin words “obedere” and “statin”, meaning obesity suppres-
sion. Initially, obestatin was found to reduce body weight and 
suppress the motility of the gastrointestinal tract via GPR39, 
exerting functions that opposed to ghrelin [37]. However, the 
function of obestatin on food intake is under debating with ei-
ther suppress or has no effect [125-127]. Obestatin is also found 
to act in brain to inhibit thirst, although other studies have chal-
lenged this claim [128,129]. In addition, obestatin has been 
shown to promote sleep, improve memory and cause anxiolytic 
effect [130-132]. It also promotes cardioprotection and is in-
volved in muscle regeneration and the determination of fiber 
type [133-136]. Additionally, it regulates immune cell functions 
and reduces imflammation [137,138]. The function of obestatin 
in the glucose metabolism is more complex and contradictory. 
It is demonstrated to improve the survival of b-cell by increas-
ing proliferation and reducing apoptosis via GLP-1R [139,140]. 
Some studies show that obestatin promotes the secretion of 
insulin stimulated by glucose via GHS-R, while others show an 
inhibitory effect on insulin secretion [141-144].

Most studies suggest that obestatin has a beneficial effect on 
lipid metabolism regulation. Obestatin reduces circulating lipid 
levels, as shown by a fourteen-day infusion of a stable obestatin 
analog in Sprague-Dawley rats, which significantly reduced 
plasma triglyceride levels without affecting cholesterol levels or 
food intake [145]. Obestatin, as well as its N-terminal fragment 
and Nt8U, the N-terminal fragment analog, have also been ob-
served to decrease circulating triglyceride levels in mice [146]. 
In addition, chronic intraperitoneal administration of obestatin 
in rats was found to reverse hyperlipidemia induced by high-
fat diet [147]. Chronic obestatin treatment also reduced total 
cholesterol and low-density lipoprotein fractions of cholesterol, 
while increasing high-density lipoproteins cholesterol content 
in type 2 diabetic mice [148]. Moreover, a significant correlation 
between the serum obestatin levels and lipoprotein subfrac-
tions was reported in non-diabetic obese patients [149].

Liver

Obestatin also regulates lipid metabolism in the liver. Chron-
ic obestatin treatment significantly decreased hepatic triglyc-
erides and cholesterol contents, and reduced hepatic lipid de-
position in rodents [147,148]. Obestatin altered the expression 
of hepatic genes related to lipid metabolism, with elevated 
expressions of adiponectin receptors (adipoRII), CPT1, PPA-
Ra. Obestatin may regulate hepatic lipid metabolism through 
AMPK, as studies have shown that obestatin increases AMPK 
phosphorylation in the liver. Moreover, one study reported 
that hepatic dysmetabolism in obese Wistar rats was related 
to obestatin suppression and that restoring obestatin improved 
hepatic lipid metabolism [150]. These findings suggest that 
obestatin improves the hepatic lipid metabolism.
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Adipocytes

Obestatin has been shown to regulate lipid metabolism in 
adipocytes by affecting free fatty acid uptake, adipogenesis and 
lipolysis. In differentiated 3T3-L1 adipocytes, obestatin treat-
ment was found to increase free fatty acid uptake [120]. Addi-
tionally, obestatin was reported to enhance adipogenesis by reg-
ulating the expression of adipogenic genes, for instance PPARg, 
FAS, CCAAT-Enhancer-Binding Proteins (C-EBP) in 3T3-L1 adi-
pocyte cells [151,152]. In mice, peripheral obestatin treatment 
significantly upregulated the expressions of genes involved in 
glycerolipid metabolism and lipogenesis including PPARg in the 
white adipose tissue [127,146]. Obestatin was also observed 
to inhibit lipolysis in 3T3-L1 adipocytes, rat preadipocytes, hu-
man subcutaneous and omental adipocytes, accompanied by 
increased AMPK phosphorylation [120,153,154]. However, the 
role of obestatin in adipogenesis and lipolysis is still being de-
bated. For example, in isolated adipocytes of rats, obestatin was 
reported to inhibit both basal and insulin-stimulated lipogen-
esis and promote adrenalin-stimulated lipolysis, which might be 
mediated by GPR39 receptor [155]. Some studies suggest that 
the regulation of lipogenesis and lipolysis by obestatin may vary 
during the differentiation of preadipocytes. For instance, in the 
early stages of 3T3-L1 cell differentiation, obestatin was found 
to be adipogenic and increase lipid accumulation, whereas in 
mature adipocytes, the lipid accumulation was decreased af-
ter obestatin treatment [156]. Similarly, obestatin suppresses 
lipolysis at the early stage of rat preadipocyte differentiation, 
while stimulates lipolysis at the late stage of adipogenesis [153]. 
Furthermore, obestatin may act on the transport of cholesterol. 
A study in cows found that continuous infusion of obestatin for 
eight weeks led to an obvious reduction in ATP-Binding Cassette 
A1 (ABCA1) expression, a key cholesterol transporter, in adipose 
tissue [157].

Given the complex and controversial effects of obestatin and 
the fact that its specific receptor is still unknown, obestatin is 
still a debated peptide. However, considering its potential as a 
treatment target for lipid metabolic diseases, further research 
is warranted.

Nesfatin-1 exerts a favorable action on the lipid metabo-
lism by inhibiting lipid accumulation and accelerating lipid de-
composition

Nesfatin-1, composed of 82 amino acids, is a post-transla-
tionally modified product of NUCB2 [158]. Although nesfatin-1 
and ghrelin are produced and secreted by the same X/A-like cell, 
nesfatin-1 exerts functions that are almost completely opposite 
to ghrelin. Nesfatin-1 was initially found to inhibit food intake 
and is named of nesfatin-1 after being identified as a satiety 
and fat-influencing protein [18]. It has been reported to reduce 
water intake via hypothalamic mechanisms, with the reduction 
in water intake being more pronounced than that of food [159]. 
Nesfatin-1 inhibits gastric and duodenal motility, decreases gas-
tric emptying, and regulates the secretion of gastric acid, which 
is mediated by a central vagal mechanism [160]. Nesfatin-1 
reduces rapid eye movement sleep and intermediate stage of 
sleep, while increasing passive wake [161,162]. In addition, it 
promotes anxiety-like behavior and increases depression-like 
behavior, exerting effects opposite to ghrelin [163-166]. In car-
diovascular physiology, nesfatin-1 exerts a hypertensive action 
mediated via the central nervous system and peripheral blood 
vessel, and induces apoptosis of cardiomyocytes [167-170]. 
Unlike ghrelin, nesfatin-1 reduces the inflammatory response, 
exerting an anti-inflammatory action [171-173]. Studies have 

shown nesfatin-1 plays important roles in reproductive matura-
tion and function, but the downstream mediators of nesfatin-1 
have not been identified yet [174-176]. In terms of glucose ho-
meostasis regulation, nesfatin-1 acts in opposition to ghrelin. 
Nesfatin-1 promotes the secretion of insulin from b-cells in pan-
creatic islets, stimulating the utilization of glucose [177-179]. 
Moreover, it improves insulin sensitivity in insulin-targeted tis-
sues, for instance the muscle, liver and adipose tissue, increas-
ing glucose uptake [180,181].

Dyslipidaemia, characterized by abnormal lipid metabolism, 
can lead to hypertriglyceridemia and hypercholesterolemia. 
Studies have reported that nesfatin-1 can improve lipid levels 
through both peripheral and central mechanisms. For instance, 
intravenous administration of nesfatin-1 for six days normalized 
plasma free fatty acid contents in mice with type 2 diabetes 
mellitus induced by streptozotocin [182]. Similarly, continuous 
subcutaneous administration of nesfatin-1 for fourteen days 
eliminated the increase in plasma cholesterol and triglyceride 
level of mice fed on high-fat diet [183]. Furthermore, exogenous 
nesfatin-1 infused from the central decreased circulating free 
fatty acid content in mice with type 2 diabetes mellitus, provid-
ing further evidence of its regulatory function in plasma lipid 
levels [184].

Liver

Nesfatin-1 is involved in regulating hepatic lipid metabolism. 
In mice with hepatic steatosis induced by high-fat diet, continu-
ous subcutaneous infusion of nesfatin-1 for fourteen days sig-
nificantly reduced the triglyceride content in the liver and de-
creased the lipid droplet size [183]. This effect was independent 
of food intake and was achieved by decreasing lipogenesis and 
increasing fatty acid oxidation. The expression of transcriptional 
factors promoting lipogenesis including PPARg, SREBP1, as well 
as the expression of rate-limited enzyme related to lipogenesis 
including ACC, FAS, was markedly reduced, while expressions of 
genes related to b-oxidation were increased. The AMPK path-
way mediated the beneficial function of nesfatin-1 in the he-
patic lipid metabolism, attenuating lipid accumulation in hepa-
tocytes. Another study also supports this finding and reported 
that nesfatin-1 treatment led to a reduction in size of lipid drop-
let in hepatocytes, and decreased expressions of genes involved 
in lipogenesis [185]. Similarly, in fish, intracerebroventricular 
nesfatin-1 treatment decreased hepatic lipogenesis while pro-
moted the oxidation of fatty acid, as evidenced by a reduction in 
the expression of transcriptional factors involved in lipogenesis 
and an increase in the expression of genes involved in the oxi-
dation of fatty acid [186]. These finding suggest nesfatin-1 not 
only directly acts on liver, but also has an indirect effect through 
the central.

Adipose tissue

The specific distribution of nesfatin-1 in the adipose tissue, 
suggests it plays a role in adipose tissue [187]. Nesfatin-1 has 
been reported to activate the mobilization of lipid. Nesfatin-1 
treatment increased the expression of Adipose Triglyceride Li-
pase (ATGL), a gene related to lipolysis, in primary brown adi-
pocytes [188]. Similarly, central administration of nesfatin-1 in 
mice activated the mobilization of lipid through HSL and ATGL, 
which was mediated by the sympathetic nervous system [184]. 
Nesfatin-1 is involved in the lipid metabolism of adipose tis-
sue not only through regulating genes related to lipid metab-
olism, but also by affecting adipocytes differentiation. NUCB2 
knockdown by short hairpin RNA in 3T3-L1 preadipocytes pro-
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moted the differentiation of adipocyte [189], while another 
study demonstrated that NUCB2 inhibited the differentiation 
of adipocytes by suppressing insulin signal and cAMP produc-
tion, and the nesfatin-1 domain was essential for inhibitory ef-
fects on adipocyte differentiation [190]. In contrast, in another 
study nesfatin-1 was demonstrated to stimulate the brown 
adipocytes differentiation. During the differentiation of primary 
brown adipocytes, the expression of nesfatin-1 was gradually 
reduced. Nesfatin-1 treatment led to markely enhanced UCP1 
expression, a classic marker of brown adipose, with reduced 
activity of mTOR signaling. These alterations were reversed by 
activation of mTOR, suggesting that nesfatin-1 induced brown 
adipocyte phenotype is likely mediated by the mTOR signaling 
[188]. Moreover, central administration of nesfatin-1 induced 
heat production from brown adipose tissue which was critically 
dependent on b3 adrenergic stimulation [191]. This finding sug-
gests that nesfatin-1 acts on the central to stimulate thermo-
genesis from brown adipose tissue, thus playing a role in lipid 
metabolism of brown adipose.

In conclusion, nesfatin-1 exerts a favorable function in the 
lipid metabolism, inhibiting lipid accumulation, accelerating lip-
id decomposition, which is promising in preventing and treating 
lipid metabolic disorders, for example NAFLD and obesity. The 
evidence that patients with NAFLD have lower serum nesfatin-1 
levels and that nesfatin-1 has a negative correlation with body 
mass index suggest this unique peptide might be involved in 
the development of lipid-related diseases [192,193]. However, 
the unknown receptor for nesfatin-1 limits our understanding 
of this unique peptide, and further exploration is needed to 
understand its effects on the development of lipid metabolic 
diseases and potential mechanisms.

Summary

The endocrine X/A-like cell plays an essential role in regulat-
ing lipid metabolism through its peptide products, such as ghre-
lin, desacyl-ghrelin, obestatin and nesfatin-1 (Figure 1). These 
peptides appear to have antagonistic or synergistic action with 
each other to maintain the lipid homeostasis. Although the 
mechanism by which X/A-like cells regulate the production and 
secretion of these peptides differently according to the need of 
organism remains unclear. Targeting X/A-like cell and its peptide 
products may provide therapeutic benefits for patients with lip-
id metabolism disorders, such as obesity, NAFLD and diabetes.

Figure 1: Gastric X/A-like Cell-Derived Peptides Participate Global 
Lipid Metabolism Regulation.
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